Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
bioRxiv ; 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38496581

RESUMO

One of the most important properties of human embryonic stem cells (hESCs) is related to their pluripotent states. In our recent study, we identified a previously unrecognized pluripotent state induced by RSeT medium. This state makes primed hESCs resistant to conversion to naïve pluripotent state. In this study, we have further characterized the metabolic features in these RSeT hESCs, including metabolic gene expression, metabolomic analysis, and various functional assays. The commonly reported metabolic modes include glycolysis or both glycolysis and oxidative phosphorylation (i.e., metabolic bivalency) in pluripotent stem cells. However, besides the presence of metabolic bivalency, RSeT hESCs exhibited a unique metabolome with additional fatty acid oxidation and imbalanced nucleotide metabolism. This metabolic quadrivalency is linked to hESC growth independent of oxygen tension and restricted capacity for naïve reprogramming in these cells. Thus, this study provides new insights into pluripotent state transitions and metabolic stress-associated hPSC growth in vitro.

2.
bioRxiv ; 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38410444

RESUMO

One of the most important properties of human embryonic stem cells (hESCs) is related to their primed and naïve pluripotent states. Our previous meta-analysis indicates the existence of heterogeneous pluripotent states derived from diverse naïve protocols. In this study, we have characterized a commercial medium (RSeT)-based pluripotent state under various growth conditions. Notably, RSeT hESCs can circumvent hypoxic growth conditions as required by naïve hESCs, in which some RSeT cells (e.g., H1 cells) exhibit much lower single cell plating efficiency, having altered or much retarded cell growth under both normoxia and hypoxia. Evidently, hPSCs lack many transcriptomic hallmarks of naïve and formative pluripotency (a phase between naive and primed states). Integrative transcriptome analysis suggests our primed and RSeT hESCs are close to the early stage of post-implantation embryos, similar to the previously reported primary hESCs and early hESC cultures. Moreover, RSeT hESCs did not express naïve surface markers such as CD75, SUSD2, and CD130 at a significant level. Biochemically, RSeT hESCs exhibit a differential dependency of FGF2 and co-independency of both Janus kinase (JAK) and TGFß signaling in a cell-line-specific manner. Thus, RSeT hESCs represent a previously unrecognized pluripotent state downstream of formative pluripotency. Our data suggest that human naïve pluripotent potentials may be restricted in RSeT medium. Hence, this study provides new insights into pluripotent state transitions in vitro.

3.
Transl Psychiatry ; 13(1): 397, 2023 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-38104115

RESUMO

Genome-wide (GWAS) and copy number variant (CNV) association studies have reproducibly identified numerous risk alleles associated with bipolar disorder (BD), major depressive disorder (MDD), and schizophrenia (SCZ), but biological characterization of these alleles lags gene discovery, owing to the inaccessibility of live human brain cells and inadequate animal models for human psychiatric conditions. Human-derived induced pluripotent stem cells (iPSCs) provide a renewable cellular reagent that can be differentiated into living, disease-relevant cells and 3D brain organoids carrying the full complement of genetic variants present in the donor germline. Experimental studies of iPSC-derived cells allow functional characterization of risk alleles, establishment of causal relationships between genes and neurobiology, and screening for novel therapeutics. Here we report the creation and availability of an iPSC resource comprising clinical, genomic, and cellular data obtained from genetically isolated families with BD and related conditions. Results from the first 324 study participants, 61 of whom have validated pluripotent clones, show enrichment of rare single nucleotide variants and CNVs overlapping many known risk genes and pathogenic CNVs. This growing iPSC resource is available to scientists pursuing functional genomic studies of BD and related conditions.


Assuntos
Transtorno Depressivo Maior , Células-Tronco Pluripotentes Induzidas , Transtornos Psicóticos , Esquizofrenia , Animais , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Transtorno Depressivo Maior/genética , Transtorno Depressivo Maior/metabolismo , Transtornos Psicóticos/metabolismo , Esquizofrenia/genética , Esquizofrenia/metabolismo , Genômica , Estudo de Associação Genômica Ampla
4.
Stem Cell Reports ; 17(2): 397-412, 2022 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-35063131

RESUMO

Inhibition of PIKfyve phosphoinositide kinase selectively kills autophagy-dependent cancer cells by disrupting lysosome homeostasis. Here, we show that PIKfyve inhibitors can also selectively eliminate pluripotent embryonal carcinoma cells (ECCs), embryonic stem cells, and induced pluripotent stem cells under conditions where differentiated cells remain viable. PIKfyve inhibitors prevented lysosome fission, induced autophagosome accumulation, and reduced cell proliferation in both pluripotent and differentiated cells, but they induced death only in pluripotent cells. The ability of PIKfyve inhibitors to distinguish between pluripotent and differentiated cells was confirmed with xenografts derived from ECCs. Pretreatment of ECCs with the PIKfyve specific inhibitor WX8 suppressed their ability to form teratocarcinomas in mice, and intraperitoneal injections of WX8 into mice harboring teratocarcinoma xenografts selectively eliminated pluripotent cells. Differentiated cells continued to proliferate, but at a reduced rate. These results provide a proof of principle that PIKfyve specific inhibitors can selectively eliminate pluripotent stem cells in vivo as well as in vitro.


Assuntos
Apoptose/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Fosfatidilinositol 3-Quinases/química , Animais , Autofagia , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , DNA/metabolismo , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Inibidores Enzimáticos/uso terapêutico , Feminino , Fase G1 , Humanos , Hidrazinas/química , Hidrazinas/farmacologia , Hidrazinas/uso terapêutico , Camundongos , Camundongos Nus , Fosfatidilinositol 3-Quinases/metabolismo , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/efeitos dos fármacos , Células-Tronco Pluripotentes/metabolismo , Teratocarcinoma/tratamento farmacológico , Teratocarcinoma/patologia , Transplante Heterólogo
5.
J Dev Biol ; 9(4)2021 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-34698187

RESUMO

In this case report, we focus on Muenke syndrome (MS), a disease caused by the p.Pro250Arg variant in fibroblast growth factor receptor 3 (FGFR3) and characterized by uni- or bilateral coronal suture synostosis, macrocephaly without craniosynostosis, dysmorphic craniofacial features, and dental malocclusion. The clinical findings of MS are further complicated by variable expression of phenotypic traits and incomplete penetrance. As such, unraveling the mechanisms behind MS will require a comprehensive and systematic way of phenotyping patients to precisely identify the impact of the mutation variant on craniofacial development. To establish this framework, we quantitatively delineated the craniofacial phenotype of an individual with MS and compared this to his unaffected parents using three-dimensional cephalometric analysis of cone beam computed tomography scans and geometric morphometric analysis, in addition to an extensive clinical evaluation. Secondly, given the utility of human induced pluripotent stem cells (hiPSCs) as a patient-specific investigative tool, we also generated the first hiPSCs derived from a family trio, the proband and his unaffected parents as controls, with detailed characterization of all cell lines. This report provides a starting point for evaluating the mechanistic underpinning of the craniofacial development in MS with the goal of linking specific clinical manifestations to molecular insights gained from hiPSC-based disease modeling.

6.
PLoS One ; 16(5): e0251461, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33984026

RESUMO

The ground or naive pluripotent state of human pluripotent stem cells (hPSCs), which was initially established in mouse embryonic stem cells (mESCs), is an emerging and tentative concept. To verify this vital concept in hPSCs, we performed a multivariate meta-analysis of major hPSC datasets via the combined analytic powers of percentile normalization, principal component analysis (PCA), t-distributed stochastic neighbor embedding (t-SNE), and SC3 consensus clustering. This robust bioinformatics approach has significantly improved the predictive values of our meta-analysis. Accordingly, we revealed various similarities or dissimilarities between some naive-like hPSCs (NLPs) generated from different laboratories. Our analysis confirms some previous studies and provides new evidence concerning the existence of three distinct naive-like pluripotent states. Moreover, our study offers global transcriptomic markers that define diverse pluripotent states under various hPSC growth protocols.


Assuntos
Genômica/métodos , Células-Tronco Pluripotentes/metabolismo , Transcriptoma , Diferenciação Celular , Proliferação de Células , Humanos , Células-Tronco Pluripotentes/citologia
7.
Stem Cell Res ; 46: 101823, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32505898

RESUMO

Muenke syndrome is the leading genetic cause of craniosynostosis and results in a variety of disabling clinical phenotypes. To model the disease and study the pathogenic mechanisms, a human induced pluripotent stem cell (hiPSC) line was generated from a patient diagnosed with Muenke syndrome. Successful reprogramming was validated by morphological features, karyotyping, loss of reprogramming factors, expression of pluripotency markers, mutation analysis and teratoma formation.


Assuntos
Craniossinostoses , Células-Tronco Pluripotentes Induzidas , Craniossinostoses/genética , Humanos , Mutação , Fenótipo , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/genética
8.
Dis Model Mech ; 13(6)2020 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-32423971

RESUMO

The basal lamina is a specialized sheet of dense extracellular matrix (ECM) linked to the plasma membrane of specific cell types in their tissue context, which serves as a structural scaffold for organ genesis and maintenance. Disruption of the basal lamina and its functions is central to many disease processes, including cancer metastasis, kidney disease, eye disease, muscular dystrophies and specific types of brain malformation. The latter three pathologies occur in the α-dystroglycanopathies, which are caused by dysfunction of the ECM receptor α-dystroglycan. However, opportunities to study the basal lamina in various human disease tissues are restricted owing to its limited accessibility. Here, we report the generation of embryoid bodies from human induced pluripotent stem cells that model the basal lamina. Embryoid bodies cultured via this protocol mimic pre-gastrulation embryonic development, consisting of an epithelial core surrounded by a basal lamina and a peripheral layer of ECM-secreting endoderm. In α-dystroglycanopathy patient embryoid bodies, electron and fluorescence microscopy reveal ultrastructural basal lamina defects and reduced ECM accumulation. By starting from patient-derived cells, these results establish a method for the in vitro synthesis of patient-specific basal lamina and recapitulate disease-relevant ECM defects seen in the α-dystroglycanopathies. Finally, we apply this system to evaluate an experimental ribitol supplement therapy on genetically diverse α-dystroglycanopathy patient samples.This article has an associated First Person interview with the first author of the paper.


Assuntos
Membrana Basal/metabolismo , Corpos Embrioides/metabolismo , Matriz Extracelular/metabolismo , Células-Tronco Embrionárias Humanas/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Síndrome de Walker-Warburg/metabolismo , Membrana Basal/efeitos dos fármacos , Membrana Basal/ultraestrutura , Estudos de Casos e Controles , Técnicas de Cultura de Células , Células Cultivadas , Criança , Pré-Escolar , Distroglicanas/genética , Distroglicanas/metabolismo , Corpos Embrioides/efeitos dos fármacos , Corpos Embrioides/ultraestrutura , Matriz Extracelular/efeitos dos fármacos , Matriz Extracelular/ultraestrutura , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Células-Tronco Embrionárias Humanas/efeitos dos fármacos , Células-Tronco Embrionárias Humanas/ultraestrutura , Humanos , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Células-Tronco Pluripotentes Induzidas/ultraestrutura , Recém-Nascido , Masculino , Pessoa de Meia-Idade , Ribitol/farmacologia , Síndrome de Walker-Warburg/tratamento farmacológico , Síndrome de Walker-Warburg/genética , Síndrome de Walker-Warburg/patologia
9.
Mol Psychiatry ; 24(4): 613-624, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30135510

RESUMO

Biological characterization of genetic variants identified in genome-wide association studies (GWAS) remains a substantial challenge. Here we used human-induced pluripotent stem cells (iPSC) and their neural derivatives to characterize common variants on chromosome 3p22 that have been associated by GWAS with major mental illnesses. IPSC-derived neural progenitor cells carrying the risk allele of the single nucleotide polymorphism (SNP), rs9834970, displayed lower baseline TRANK1 expression that was rescued by chronic treatment with therapeutic dosages of valproic acid (VPA). VPA had the greatest effects on TRANK1 expression in iPSC, NPC, and astrocytes. Although rs9834970 has no known function, we demonstrated that a nearby SNP, rs906482, strongly affects binding by the transcription factor, CTCF, and that the high-affinity allele usually occurs on haplotypes carrying the rs9834970 risk allele. Decreased expression of TRANK1 perturbed expression of many genes involved in neural development and differentiation. These findings have important implications for the pathophysiology of major mental illnesses and the development of novel therapeutics.


Assuntos
Citocinas/genética , Células-Tronco Neurais/efeitos dos fármacos , Ácido Valproico/farmacologia , Alelos , Astrócitos/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Citocinas/efeitos dos fármacos , Citocinas/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Frequência do Gene/genética , Estudo de Associação Genômica Ampla , Genótipo , Humanos , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Células-Tronco Pluripotentes Induzidas/metabolismo , Neurogênese/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Polimorfismo de Nucleotídeo Único/genética , Ácido Valproico/metabolismo
10.
Trends Mol Med ; 24(9): 805-820, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30006147

RESUMO

Use of human pluripotent stem cells (hPSCs) and their differentiated derivatives have led to recent proof-of-principle drug discoveries, defining a pathway to the implementation of hPSC-based drug discovery (hPDD). Current hPDD strategies, however, have inevitable conceptual biases and technological limitations, including the dimensionality of cell-culture methods, cell maturity and functionality, experimental variability, and data reproducibility. In this review, we dissect representative hPDD systems via analysis of hPSC-based 2D-monolayers, 3D culture, and organoids. We discuss mechanisms of drug discovery and drug repurposing, and roles of membrane drug transporters in tissue maturation and hPDD using the example of drugs that target various mutations of CFTR, the cystic fibrosis transmembrane conductance regulator gene, in patients with cystic fibrosis.


Assuntos
Técnicas de Cultura de Células/métodos , Desenvolvimento de Medicamentos/métodos , Descoberta de Drogas/métodos , Células-Tronco Pluripotentes/efeitos dos fármacos , Transportadores de Cassetes de Ligação de ATP/metabolismo , Animais , Técnicas de Cultura de Células/instrumentação , Fibrose Cística/tratamento farmacológico , Fibrose Cística/genética , Fibrose Cística/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Desenvolvimento de Medicamentos/instrumentação , Descoberta de Drogas/instrumentação , Humanos , Terapia de Alvo Molecular/métodos , Organoides/citologia , Organoides/efeitos dos fármacos , Organoides/metabolismo , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/metabolismo
11.
Stem Cells ; 36(10): 1501-1513, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29873142

RESUMO

Human induced pluripotent stem cells (iPSCs) have great potential as source cells for therapeutic uses. However, reports indicate that iPSCs carry genetic abnormalities, which may impede their medical use. Little is known about mechanisms contributing to intrinsic DNA damage in iPSCs that could lead to genomic instability. In this report, we investigated the level of DNA damage in human iPSC lines compared with their founder fibroblast line and derived mesenchymal stromal cell (MSC) lines using the phosphorylated histone variant, γH2AX, as a marker of DNA damage. We show that human iPSCs have elevated basal levels of γH2AX, which correlate with markers of DNA replication: 5-ethynyl-2'-deoxyuridine and the single-stranded binding protein, replication protein A. γH2AX foci in iPSCs also colocalize to BRCA1 and RAD51, proteins in the homologous repair pathway, implying γH2AX in iPSCs marks sites of double strand breaks. Our study demonstrates an association between increased basal levels of γH2AX and the rapid replication of iPSCs. Stem Cells 2018;36:1501-1513.


Assuntos
Dano ao DNA , Reparo do DNA , Histonas/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Animais , Diferenciação Celular/fisiologia , Linhagem Celular , Replicação do DNA , Fibroblastos/metabolismo , Histonas/genética , Humanos , Camundongos
12.
Cell ; 173(4): 851-863.e16, 2018 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-29576452

RESUMO

Hibernating mammals survive hypothermia (<10°C) without injury, a remarkable feat of cellular preservation that bears significance for potential medical applications. However, mechanisms imparting cold resistance, such as cytoskeleton stability, remain elusive. Using the first iPSC line from a hibernating mammal (13-lined ground squirrel), we uncovered cellular pathways critical for cold tolerance. Comparison between human and ground squirrel iPSC-derived neurons revealed differential mitochondrial and protein quality control responses to cold. In human iPSC-neurons, cold triggered mitochondrial stress, resulting in reactive oxygen species overproduction and lysosomal membrane permeabilization, contributing to microtubule destruction. Manipulations of these pathways endowed microtubule cold stability upon human iPSC-neurons and rat (a non-hibernator) retina, preserving its light responsiveness after prolonged cold exposure. Furthermore, these treatments significantly improved microtubule integrity in cold-stored kidneys, demonstrating the potential for prolonging shelf-life of organ transplants. Thus, ground squirrel iPSCs offer a unique platform for bringing cold-adaptive strategies from hibernators to humans in clinical applications. VIDEO ABSTRACT.


Assuntos
Adaptação Fisiológica , Células-Tronco Pluripotentes Induzidas/metabolismo , Neurônios/metabolismo , Animais , Diferenciação Celular , Temperatura Baixa , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Rim/efeitos dos fármacos , Rim/metabolismo , Lisossomos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Neurônios/citologia , Estresse Oxidativo , Inibidores de Proteases/farmacologia , Ratos , Espécies Reativas de Oxigênio/metabolismo , Retina/metabolismo , Sciuridae , Transcriptoma , Tubulina (Proteína)/química , Tubulina (Proteína)/genética , Tubulina (Proteína)/metabolismo
13.
J Vis Exp ; (129)2017 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-29155789

RESUMO

Embryonic and induced pluripotent stem cells can self-renew and differentiate into multiple cell types of the body. The pluripotent cells are thus coveted for research in regenerative medicine and are currently in clinical trials for eye diseases, diabetes, heart diseases, and other disorders. The potential to differentiate into specialized cell types coupled with the recent advances in genome editing technologies including the CRISPR/Cas system have provided additional opportunities for tailoring the genome of iPSC for varied applications including disease modeling, gene therapy, and biasing pathways of differentiation, to name a few. Among the available editing technologies, the CRISPR/Cas9 from Streptococcus pyogenes has emerged as a tool of choice for site-specific editing of the eukaryotic genome. The CRISPRs are easily accessible, inexpensive, and highly efficient in engineering targeted edits. The system requires a Cas9 nuclease and a guide sequence (20-mer) specific to the genomic target abutting a 3-nucleotide "NGG" protospacer-adjacent-motif (PAM) for targeting Cas9 to the desired genomic locus, alongside a universal Cas9 binding tracer RNA (together called single guide RNA or sgRNA). Here we present a step-by-step protocol for efficient generation of feeder-independent and footprint-free iPSC and describe methodologies for genome editing of iPSC using the Cas9 ribonucleoprotein (RNP) complexes. The genome editing protocol is effective and can be easily multiplexed by pre-complexing sgRNAs for more than one target with the Cas9 protein and simultaneously delivering into the cells. Finally, we describe a simplified approach for identification and characterization of iPSCs with desired edits. Taken together, the outlined strategies are expected to streamline generation and editing of iPSC for manifold applications.


Assuntos
Sistemas CRISPR-Cas , Células-Tronco Pluripotentes Induzidas/fisiologia , Pâncreas/fisiologia , Caspase 9/genética , Caspase 9/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Pâncreas/citologia
14.
Stem Cells Transl Med ; 6(2): 527-538, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-28191759

RESUMO

Cardiomyocytes can be differentiated from human pluripotent stem cells (hPSCs) in defined conditions, but efficient and consistent cardiomyocyte differentiation often requires expensive reagents such as B27 supplement or recombinant albumin. Using a chemically defined albumin-free (E8 basal) medium, we identified heparin as a novel factor that significantly promotes cardiomyocyte differentiation efficiency, and developed an efficient method to differentiate hPSCs into cardiomyocytes. The treatment with heparin helped cardiomyocyte differentiation consistently reach at least 80% purity (up to 95%) from more than 10 different hPSC lines in chemically defined Dulbecco's modified Eagle's medium/F-12-based medium on either Matrigel or defined matrices like vitronectin and Synthemax. One of heparin's main functions was to act as a Wnt modulator that helped promote robust and consistent cardiomyocyte production. Our study provides an efficient, reliable, and cost-effective method for cardiomyocyte derivation from hPSCs that can be used for potential large-scale drug screening, disease modeling, and future cellular therapies. Stem Cells Translational Medicine 2017;6:527-538.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Meios de Cultura/química , Heparina/farmacologia , Células-Tronco Embrionárias Humanas/efeitos dos fármacos , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Miócitos Cardíacos/efeitos dos fármacos , Técnicas de Cultura de Células , Linhagem Celular , Células-Tronco Embrionárias Humanas/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Miócitos Cardíacos/metabolismo , Fenótipo , Fatores de Tempo , Via de Sinalização Wnt/efeitos dos fármacos
15.
Neuropsychopharmacology ; 42(3): 774-784, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27534267

RESUMO

Because of unavoidable confounding variables in the direct study of human subjects, it has been difficult to unravel the effects of prenatal cocaine exposure on the human fetal brain, as well as the cellular and biochemical mechanisms involved. Here, we propose a novel approach using a human pluripotent stem cell (hPSC)-based 3D neocortical organoid model. This model retains essential features of human neocortical development by encompassing a single self-organized neocortical structure, without including an animal-derived gelatinous matrix. We reported previously that prenatal cocaine exposure to rats during the most active period of neural progenitor proliferation induces cytoarchitectural changes in the embryonic neocortex. We also identified a role of CYP450 and consequent oxidative ER stress signaling in these effects. However, because of differences between humans and rodents in neocorticogenesis and brain CYP metabolism, translation of the research findings from the rodent model to human brain development is uncertain. Using hPSC 3D neocortical organoids, we demonstrate that the effects of cocaine are mediated through CYP3A5-induced generation of reactive oxygen species, inhibition of neocortical progenitor cell proliferation, induction of premature neuronal differentiation, and interruption of neural tissue development. Furthermore, knockdown of CYP3A5 reversed these cocaine-induced pathological phenotypes, suggesting CYP3A5 as a therapeutic target to mitigate the deleterious neurodevelopmental effects of prenatal cocaine exposure in humans. Moreover, 3D organoid methodology provides an innovative platform for identifying adverse effects of abused psychostimulants and pharmaceutical agents, and can be adapted for use in neurodevelopmental disorders with genetic etiologies.


Assuntos
Cocaína/farmacologia , Citocromo P-450 CYP3A/metabolismo , Inibidores da Captação de Dopamina/farmacologia , Neocórtex/efeitos dos fármacos , Neurogênese/efeitos dos fármacos , Células-Tronco Pluripotentes/efeitos dos fármacos , Linhagem Celular , Humanos
16.
Stem Cell Res ; 17(1): 122-9, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27286574

RESUMO

Identification and quantification of the characteristics of stem cell preparations is critical for understanding stem cell biology and for the development and manufacturing of stem cell based therapies. We have developed image analysis and visualization software that allows effective use of time-lapse microscopy to provide spatial and dynamic information from large numbers of human embryonic stem cell colonies. To achieve statistically relevant sampling, we examined >680 colonies from 3 different preparations of cells over 5days each, generating a total experimental dataset of 0.9 terabyte (TB). The 0.5 Giga-pixel images at each time point were represented by multi-resolution pyramids and visualized using the Deep Zoom Javascript library extended to support viewing Giga-pixel images over time and extracting data on individual colonies. We present a methodology that enables quantification of variations in nominally-identical preparations and between colonies, correlation of colony characteristics with Oct4 expression, and identification of rare events.


Assuntos
Células-Tronco Embrionárias Humanas/citologia , Processamento de Imagem Assistida por Computador , Microscopia de Fluorescência , Fator 3 de Transcrição de Octâmero/metabolismo , Imagem com Lapso de Tempo , Linhagem Celular , Células-Tronco Embrionárias Humanas/metabolismo , Humanos , Software
17.
Blood ; 126(5): 629-39, 2015 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-26041741

RESUMO

Adoptive transfer of T cells genetically modified to express chimeric antigen receptors (CARs) targeting the CD19 B cell-associated protein have demonstrated potent activity against relapsed/refractory B-lineage acute lymphoblastic leukemia (B-ALL). Not all patients respond, and CD19-negative relapses have been observed. Overexpression of the thymic stromal lymphopoietin receptor (TSLPR; encoded by CRLF2) occurs in a subset of adults and children with B-ALL and confers a high risk of relapse. Recent data suggest the TSLPR signaling axis is functionally important, suggesting that TSLPR would be an ideal immunotherapeutic target. We constructed short and long CARs targeting TSLPR and tested efficacy against CRLF2-overexpressing B-ALL. Both CARs demonstrated activity in vitro, but only short TSLPR CAR T cells mediated leukemia regression. In vivo activity of the short CAR was also associated with long-term persistence of CAR-expressing T cells. Short TSLPR CAR treatment of mice engrafted with a TSLPR-expressing ALL cell line induced leukemia cytotoxicity with efficacy comparable with that of CD19 CAR T cells. Short TSLPR CAR T cells also eradicated leukemia in 4 xenograft models of human CRLF2-overexpressing ALL. Finally, TSLPR has limited surface expression on normal tissues. TSLPR-targeted CAR T cells thus represent a potent oncoprotein-targeted immunotherapy for high-risk ALL.


Assuntos
Imunoterapia Adotiva/métodos , Leucemia-Linfoma Linfoblástico de Células Precursoras B/terapia , Receptores de Citocinas/antagonistas & inibidores , Linfócitos T/imunologia , Animais , Antígenos CD19/metabolismo , Linhagem Celular Tumoral , Humanos , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Leucemia-Linfoma Linfoblástico de Células Precursoras B/imunologia , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/imunologia , Proteínas Recombinantes de Fusão/uso terapêutico , Ensaios Antitumorais Modelo de Xenoenxerto
18.
Cell Rep ; 10(4): 616-32, 2015 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-25640183

RESUMO

Human pluripotent stem cell (hPSC) lines exhibit repeated patterns of genetic variation, which can alter in vitro properties as well as suitability for clinical use. We examined associations between copy-number variations (CNVs) on chromosome 17 and hPSC mesodiencephalic dopaminergic (mDA) differentiation. Among 24 hPSC lines, two karyotypically normal lines, BG03 and CT3, and BG01V2, with trisomy 17, exhibited amplification of the WNT3/WNT9B region and rapid mDA differentiation. In hPSC lines with amplified WNT3/WNT9B, basic fibroblast growth factor (bFGF) signaling through mitogen-activated protein kinase (MAPK)/ERK amplifies canonical WNT signaling by phosphorylating LRP6, resulting in enhanced undifferentiated proliferation. When bFGF is absent, noncanonical WNT signaling becomes dominant due to upregulation of SIAH2, enhancing JNK signaling and promoting loss of pluripotency. When bFGF is present during mDA differentiation, stabilization of canonical WNT signaling causes upregulation of LMX1A and mDA induction. Therefore, CNVs in 17q21.31, a "hot spot" for genetic variation, have multiple and complex effects on hPSC cellular phenotype.


Assuntos
Neurônios/citologia , Neurônios/metabolismo , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/metabolismo , Proteínas Wnt/metabolismo , Proteína Wnt3/metabolismo , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Linhagem Celular , Humanos , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Transdução de Sinais , Proteínas Wnt/genética , Proteína Wnt3/genética
19.
J Vis Exp ; (89)2014 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-25077932

RESUMO

Human pluripotent stem cells (hPSCs) hold great promise for regenerative medicine and biopharmaceutical applications. Currently, optimal culture and efficient expansion of large amounts of clinical-grade hPSCs are critical issues in hPSC-based therapies. Conventionally, hPSCs are propagated as colonies on both feeder and feeder-free culture systems. However, these methods have several major limitations, including low cell yields and generation of heterogeneously differentiated cells. To improve current hPSC culture methods, we have recently developed a new method, which is based on non-colony type monolayer (NCM) culture of dissociated single cells. Here, we present detailed NCM protocols based on the Rho-associated kinase (ROCK) inhibitor Y-27632. We also provide new information regarding NCM culture with different small molecules such as Y-39983 (ROCK I inhibitor), phenylbenzodioxane (ROCK II inhibitor), and thiazovivin (a novel ROCK inhibitor). We further extend our basic protocol to cultivate hPSCs on defined extracellular proteins such as the laminin isoform 521 (LN-521) without the use of ROCK inhibitors. Moreover, based on NCM, we have demonstrated efficient transfection or transduction of plasmid DNAs, lentiviral particles, and oligonucleotide-based microRNAs into hPSCs in order to genetically modify these cells for molecular analyses and drug discovery. The NCM-based methods overcome the major shortcomings of colony-type culture, and thus may be suitable for producing large amounts of homogeneous hPSCs for future clinical therapies, stem cell research, and drug discovery.


Assuntos
Técnicas Citológicas/métodos , Inibidores Enzimáticos/farmacologia , Células-Tronco Pluripotentes/efeitos dos fármacos , Células-Tronco Pluripotentes/fisiologia , Quinases Associadas a rho/antagonistas & inibidores , Amidas/farmacologia , Animais , Dioxanos/farmacologia , Fibroblastos/citologia , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/fisiologia , Laminina/farmacologia , Camundongos , Células-Tronco Pluripotentes/citologia , Piridinas/farmacologia , Pirimidinas/farmacologia , Tiazóis/farmacologia , Transfecção
20.
Stem Cells Transl Med ; 3(7): 867-78, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24855277

RESUMO

The ability to differentiate induced pluripotent stem cells (iPSCs) into committed skeletal progenitors could allow for an unlimited autologous supply of such cells for therapeutic uses; therefore, we attempted to create novel bone-forming cells from human iPSCs using lines from two distinct tissue sources and methods of differentiation that we previously devised for osteogenic differentiation of human embryonic stem cells, and as suggested by other publications. The resulting cells were assayed using in vitro methods, and the results were compared with those obtained from in vivo transplantation assays. Our results show that true bone was formed in vivo by derivatives of several iPSC lines, but that the successful cell lines and differentiation methodologies were not predicted by the results of the in vitro assays. In addition, bone was formed equally well from iPSCs originating from skin or bone marrow stromal cells (also known as bone marrow-derived mesenchymal stem cells), suggesting that the iPSCs did not retain a "memory" of their previous life. Furthermore, one of the iPSC-derived cell lines formed verifiable cartilage in vivo, which likewise was not predicted by in vitro assays.


Assuntos
Bioensaio/métodos , Diferenciação Celular , Condrócitos/metabolismo , Condrogênese , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Mesenquimais/metabolismo , Osteoblastos/metabolismo , Osteogênese , Idoso , Idoso de 80 Anos ou mais , Animais , Linhagem Celular , Reprogramação Celular , Condrócitos/transplante , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Células-Tronco Pluripotentes Induzidas/transplante , Masculino , Transplante de Células-Tronco Mesenquimais , Camundongos , Osteoblastos/transplante , Fenótipo , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...